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Abstract. We investigate numerically the effective force between charged colloidal particles in
an aqueous solution. By Monte Carlo simulation using the primitive model of strongly asymmetric
electrolytes, we show that a pair of colloidal particles under geometrical confinements develop an
attraction for strong electrostatic coupling. We also confirm that such attraction vanishes for high
salt content. These features explain well the recent experiments on polystyrene latex particles.

1. Introduction

Colloidal suspensions (e.g., polystyrene latex and silica particles) have attracted much attention
in the field of statistical physics [1]. It is of fundamental interest to understand the effective
interaction between charged colloidal particles in an aqueous solution [2–10], because a vast
number of industrial and natural processes depend on controlling the interaction between
micron- or submicron-sized colloidal particles. While the bare Coulomb interaction between
charged colloidal particles is purely repulsive, the problem is made non-trivial by the presence
of the microscopic counterions, which are dispersed in an aqueous solution and screen the
direct Coulomb repulsion. In the framework of continuum theory, effective potentials between
charged colloidal particles (macroions) have been derived from the Poisson–Boltzmann
equation [2]. For weak Coulomb interaction or high dilution of the macroions, the linearized
screening theory of Debye and Hückel always leads to an effective pure-repulsive interaction
between macroions. This phenomenon is described by the Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory, which predicts the screened Coulomb repulsion between charged
colloidal particles in an aqueous solution.

Recently, the effective interactions between charged colloidal particles have been
measured in experiments [11–15]. Kepler and Fraden have performed measurements on
colloidal suspensions confined between two glass plates, and determined the effective pair
potential between colloidal particles from the pair correlation function g(r) [12]. Crocker and
Grier have investigated the effective interactions between charged polystyrene latex particles
using the optical tweezer technique [13,15]. These studies have clarified that the pair interaction
between unconfined pairs of charged colloidal spheres is purely repulsive, but when the
same pairs of spheres are confined by parallel glass plates an attraction develops in the pair
potential. They have observed that the attractive interactions are strong and long ranged, which
cannot be explained by van der Waals interaction. These results imply that the fundamental
theory of colloids is now unreliable: negatively charged colloidal particles in a solution can
attract each other, and these phenomena are inconsistent with the conventional DLVO theory.
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Bowen and Sharif [16] have performed a numerical calculation with the continuum mean-field
approximation, and claimed that the attractive interaction appears in confined geometries.
However, Neu [17] and Sader and Chan [18] have proved analytically that the non-linear
Poisson–Boltzmann equation can only yield repulsion in confined geometry and the numerical
result given by Bowen and Sharif [16] is not correct. To date, the microscopic origin of
these attractive interactions between charged colloidal particles could not be explained by
the traditional theories, and this remains an open question. In this paper, we perform Monte
Carlo simulation of charged colloidal particles, which are confined (i) by a cylindrical pore
and (ii) between two parallel plates. The effective forces F(r) between a pair of colloidal
particles are clarified with different surface charges and valences of microions in an aqueous
solution. We observe an attractive interaction between like-charged colloidal particles when
the electrostatic couplings are strong, which gives a consistent explanation for the recent
experiments in low-salt-content conditions [15].

This paper is organized as follows. In section 2, we describe the primitive model of
colloidal particles under geometrical confinement. In section 3, the numerical results on the
effective force between highly charged colloidal particles are displayed. Section 4 is devoted
to discussion and conclusions.

2. Models

We adopt the ‘primitive model’ of strongly asymmetric electrolytes involving the excluded
volume and the Coulomb interaction of charged particles (colloidal particles and microscopic
counterions), to describe colloidal suspensions under geometrical confinement [2, 8, 9]. The
solvent enters into this model via its dielectric constant ε, which reduces the Coulomb
interaction. We consider two spherical macroions with the surface charge −Ze (Z > 0),
where e is the elementary charge of an electron. In addition, Nc counterions are dispersed,
carrying an opposite charge qe (q > 0). The number of counterions Nc is determined by other
parameters (q, Z, . . .) by a condition of global charge neutrality:

−2Z + Ncq + 2σpL
2 = 0 (1)

where σp is the surface charge density of each parallel plate. In the following calculation, the
value of σp is set to be σp = 0. The interactions between particles are given by

Vmm(r) =
{ ∞ for r � d

Z2e2/4πεr for r > d
(2)

Vmc(r) =
{ ∞ for r � d/2 + rc

−Zqe2/4πεr for r > d/2 + rc
(3)

Vcc(r) =
{ ∞ for r � 2rc
q2e2/4πεr for r > 2rc

(4)

where Vmm(r), Vmc(r), and Vcc(r) represent the pair potentials of macroions (m) and
counterions (c), and d and rc are the diameter of the colloidal particles and the core radius of
the counterions, respectively.

In the following, we consider two different types of geometry. One is that of two charged
colloidal particles confined by a cylindrical pore (figure 1). In this case, the linear system
size in the z-direction is taken to be L, and the radius of the cylindrical pore is defined as
Ld (−L/2 � z � L/2 and

√
x2 + y2 � Ld ). In this case, the two macroions are placed at

the positions R1 = (0, 0,−r/2) and R2 = (0, 0, r/2), where r (�L) denotes the centre-
to-centre interparticle distance. The other case is that of colloidal particles confined between
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Figure 1. Geometry of colloidal particles in an aqueous solution confined by a cylinder.

parallel plates. The linear system sizes in the x- and y- directions are taken to be L, and the
distance between two parallel plates is defined as Lz (−L/2 � x, y � L/2 and −Lz/2 �
z � Lz/2). The two macroions are placed at the positions R1 = (−r/2

√
2,−r/2

√
2, 0) and

R2 = (r/2
√

2, r/2
√

2, 0).

3. Numerical results

First, we briefly mention the numerical technique used in this study. In general, the amount of
computation required to evaluate all pairwise interactions for the N -body system with long-
range interaction increases as ∼O(N2). Such simulation becomes costly for large N . The tree
algorithm [19, 20] can circumvent this difficulty; it is based on the hierarchical grouping of
interactions between particles and a tree-type data structure to represent an N -body system.
The whole system is recursively divided into subcells each including more than one particle,
which construct a hierarchical tree structure for the system [20, 21]. Once such a hierarchical
tree has been constructed, the interaction of any particles can be estimated by a recursive
calculation. To obtain the interaction between particles at larger distance, the grouping of
particles is taken to be larger under the condition l/D < θ . Here l, D, and θ (<1) represent
the size of the subcell, the distance between the subcell and the particle, and a fixed accuracy
parameter, respectively. This becomes equivalent to the traditional Monte Carlo algorithm in
the limit of θ → 0. In the actual calculation, we have confirmed that our conclusions do not
change with the choice of θ . For the more technical details of the hierarchical tree structure, see
reference [20]. These procedures reduce greatly the amount of computation required to evaluate
the interaction between particles—to ∼O(N logN)—without loss of the required numerical
precision [20]. We apply this hierarchical tree algorithm to a Monte Carlo simulation: the
tree–MC algorithm.

The effective forces between like-charged colloidal particles confined between parallel
plates are studied in the (N, V, T ) ensemble. We start with an arbitrary counterion config-
uration which does not penetrate into the two colloidal particles. It takes 2 × 104 Monte Carlo
steps (MCS) to get the system into equilibrium, and 1×105 MCS to take the canonical average
after the equilibrium has been reached. We also take the sample average over 60 samples for
each run. In the following, the temperature T and the relative dielectric constant of water
εr are taken to be T = 300 K and εr = 78, respectively. The diameter of the macroions d
and the radius of the microion core rc are taken as d = 20 nm and rc = 2.8 Å, respectively.
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These are realistic values for actual colloidal particles which are experimentally studied. We
impose the hard-wall condition in the confined directions (the x- and y-directions in the case
of confinement by a cylindrical pore, and the z-direction for confinement by parallel plates),
and the periodic boundary condition in the others. Comparing the results calculated by the
minimum-image convention with those calculated by the Lekner summation technique [22]
including periodic image charges, we have checked that boundary effects are not relevant, at
least for the parameters in the following calculations. Figure 2 is a typical snapshot of colloidal
particles and counterions. The distance between two parallel plates Lz and the interparticle
distance r between two colloidal spheres are taken to be Lz = 2.5d and r = 4d, respectively.
The magnitude of the charges on the colloidal particles, Z, and surrounding counterions, q,
are taken to be Z = 600 and q = 1, respectively. We can see that counterions surround a pair
of colloidal particles and screen the Coulomb repulsion.

Figure 2. A snapshot of the equilibrium state of counterions surrounding two colloidal particles,
which are confined between parallel plates.

The effective force F1(r) acting on the first colloidal particle can be obtained from

F1(r) = F dir
1 (r) + F ind

1 (r). (5)

In equation (5), F dir
1 (r) is a direct Coulomb repulsion:

F dir
1 (r) = −∇

(
Z2e2

4πε

1

r

)
(6)

and F ind
1 (r) is the indirect part induced by counterions, written as

F ind
1 (r) = ∇

(∑
j

Zqe2

4πε

1

rj

)
(7)

where rj is the distance between the first macroion and the j th microion. In the following
calculations, we neglect the influence of the force caused by the depletion effect. This is
because the main interest of this study is in explaining the long-range attractive component
observed in recent experiments [15], but the range of the depletion force becomes very short
for highly charged colloidal particles (Z/q 	 1); it is proportional to

√
q/Z [23].

Figure 3 shows the dimensionless effective force F(r)/F0 between a pair of colloidal
particles confined by a cylinder, where F0 is defined to be F0 ≡ kBT /λB (λB ≡ e2/4πεkBT is
the Bjerrum length). In figure 3,F(r) is defined asF(r) ≡ F1(r)·(R1−R2)/|R1−R2| , where
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Figure 3. (a) The dimensionless effective force F(r)/F0 between two colloidal particles versus
the interparticle distance r for confinement by a cylinder. The surface charge Z is taken to be
Z = 450. Solid squares, solid circles, and solid triangles denote the results for q = 1 (monovalent),
2 (divalent), and 3 (trivalent), respectively. (b) The dimensionless effective force F(r)/F0 between
two colloidal particles versus the interparticle distance r . The surface charge Z is taken to be
Z = 600. Solid squares, solid circles, and solid triangles denote the results for q = 1, 2, and 3,
respectively.

R1 and R2 are the positional vectors of the first and the second colloidal particles, respectively.
Hence a positive value of F(r) implies repulsion, and a negative value indicates attraction. For
the charge of the counterions q, we consider three different cases: monovalent ions (q = 1) and
multivalent ones (q = 2, 3), to clarify the effect of the strength on the electrostatic coupling.
Figures 3(a) and 3(b) show the results calculated with the surface charges Z = 450 and



5174 T Terao and T Nakayama

Z = 600, respectively. Solid squares, solid circles, and solid triangles denote the results with
q = 1 (monovalent), 2 (divalent), and 3 (trivalent), respectively. In these calculations, the
radius of the cylinder Ld is set to be Ld = 1.25d. In figure 3(a), the interparticle force F(r)
is approximately equal to zero in the case of q = 2. In figure 3(b), however, F(r) apparently
takes a negative value in the case of q = 2, where attractive interactions are enhanced for more
highly charged colloids (Z = 600). From these results, the effective forces between colloidal
particles are repulsive with smaller electrostatic coupling. With larger Z and q, in contrast, a
pair of colloidal particles show an attraction.

Figure 4 shows the effective force F(r)/F0 between two colloidal particles confined
between parallel plates. The distance between parallel plates Lz is given by Lz = 2.5d.
Solid squares, solid circles, and solid triangles denote the results obtained with q = 1, 2, and
3, respectively. In this study, we consider colloidal particles confined by uncharged parallel
plates, and the effect of image charges is neglected. As in figure 3, we can observe attractive
interaction between highly charged colloidal particles for strong electrostatic couplings. These
results give a consistent explanation with regard to the recent experiments, which show that the
interaction between charged colloidal particles cannot be described by the conventional DLVO
theory for low salt content: the interaction between colloidal particles becomes attractive when
the electrostatic coupling is strong.

Figure 4. The dimensionless effective force F(r)/F0 between two colloidal particles versus the
interparticle distance r for confinement between parallel plates. The surface chargeZ is taken to be
Z = 600. Solid squares, solid circles, and solid triangles denote the results for q = 1 (monovalent),
2 (divalent), and 3 (trivalent), respectively.

We also calculate the effective interaction between charged colloidal particles in high-
salt-content conditions, as well as in low-salt-content conditions. Figure 5 shows the results
on the interparticle force F(r) for colloidal particles (Z = 600) confined by a cylinder, with
additional salt ions. Solid squares and open squares denote the results with the additional
salt densities ρs = 0.0 and 10−4 M, respectively. Figures 5(a) and 5(b) display the results
for monovalent microions (q = 1) and divalent ones (q = 2), respectively. In figure 5(a),
the effective force F(r) becomes small for ρs = 10−4 M, since the screening effect due to
microions becomes dominant and the screening length is small. In figure 5(b), the attraction
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Figure 5. (a) The effective force F(r) for monovalent microions (q = 1). The value of Z is taken
to be Z = 600. Solid squares and open squares denote the results calculated with the densities
of additional salt ions ρs = 0.0 M and ρs = 10−4 M, respectively. (b) The effective force F(r)
for divalent microions (q = 2). The value of Z is taken to be Z = 600. Solid squares and open
squares denote the results calculated with the densities of additional salt ions ρs = 0.0 M and
ρs = 10−4 M, respectively.

vanishes in high-salt-content conditions, which agrees very well with the recent experiments,
where the attraction between like-charged colloids is observed only in well-deionized, low-
salt-content conditions.
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Our study has shed light on the microscopic origin of the attractive force between
negatively charged colloidal particles. For strong electrostatic coupling, the attraction becomes
dominant due to the ‘overscreening’ (non-linear screening) effect produced by surrounding
counterions [14, 15]. This overscreening effect induces a strong cationic atmosphere around
a pair of negatively charged colloidal particles, which produces an attractive interaction. It is
noteworthy that we can explain the attraction between charged colloidal particles solely on the
basis of the Coulomb interaction with non-linearity and under geometrical confinement [15].
Comparison between our work and previous studies [17, 18] suggests that the observed
attractive interaction between like-charged colloids in an aqueous solution is essentially a
fluctuation-based phenomenon, while the effect of fluctuations is neglected in the traditional
Poisson–Boltzmann equations [2, 17, 18]. In the theoretical treatment, the continuum mean-
field approximation [16–18] is not appropriate for describing this problem, but the primitive-
model approach including the spatial and temporal density fluctuation of counterions is
required, which is a characteristic feature of fluctuation-induced attractions [24]. These results
will become important for understanding the physical nature of colloidal crystal [1, 25, 26].

4. Conclusions

In conclusion, we have investigated the effective interaction between charge-stabilized
colloidal particles numerically, using the primitive model of strongly asymmetric electrolytes.
By Monte Carlo simulation combined with the tree algorithm, we have clarified the effective
force between colloidal particles under geometrical confinements. With smaller electrostatic
coupling, the effective forces between colloidal particles are pure repulsive over the range
of distances explored. With larger coupling, in contrast, the attractive interaction dominates.
We have shown that the effective interaction between highly charged colloidal particles under
low-salt-content conditions contradicts the theoretical prediction of the conventional DLVO
theory. We have also demonstrated that such attractive interaction vanishes in high-salt-
content conditions. These results explain well recent experiments using polystyrene latex
particles [13, 15], where attraction between highly charged colloids is observed only under
low-salt-content conditions, and the strength of the electrostatic coupling in an aqueous
solution is an essential parameter for determining the effective potential between like-charged
colloidal particles. From this point of view, it is remarkable that reference [25] has indicated
a relationship between the magnitude of the surface charge Z and the re-entrant solid–fluid
transition of three-dimensional colloidal crystal.

In this paper, a cylinder (figure 1) or parallel plates (figure 2) are treated as being uncharged,
while parallel glass plates or walls are highly charged in references [13] and [15]. We consider
that highly charged glass plates in these system work as the third charged body in an electrolyte,
in addition to like-charged colloidal particles, in confined geometry. In general, many-body
effects cannot be negligible in low-salt-content conditions when the screening length becomes
large. Charged bodies in an aqueous solution—such as highly charged glass plates or walls—
will enhance the attractive interaction by means of a ‘non-additive many-body effect’ [27],
which has been pointed out in the field of polyelectrolytes.

Most of the previous simulations using the primitive model have treated relatively small
charge asymmetriesZ/q, since you have to perform calculations for a large number of particles
in a highly asymmetric system—for example, highly charged colloidal suspensions. The tree–
MC algorithm enables us to treat a large number of particles in a solution with a fairly small
amount of computation. This tree–MC algorithm is also applicable to other systems such as
polyelectrolytes, micellar solutions, and biomolecules, but these are future problems.
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